
Building your own instrument with Pd

Hans-Christoph Steiner
at.or.at

Brooklyn, NY, USA

hans@at.or.at

ABSTRACT
Computer music performance environments have evolved
greatly in recent years, allowing complex control and inter-
action with sound in real time. But the interaction has too
frequently been tied to the keyboard-mouse-monitor model,
narrowly constraining the range of possible gestures the per-
former can use. The range of human interface devices has
also greatly increased, making it much easier for the com-
puter musician to capture a broader range of gestures. Pd
provides an ideal platform for this work, combining sound
and visual synthesis and control with easy access to many
external devices for interfacing with humans. Pd is a high
level programming language, making it usable by people of
varying technical skill. This paper provides an overview of
the numerous methods of interfaces with humans using Pd.

Keywords
Instrument design, haptic feedback, gestural control, HID

1. FORMATTING CONVENTIONS
There are two conventions used here which are derived

from the Pd mailing lists:
[object] - This represents Pd object. If there is no refer-

ence, it is considered part of the main distributions.
[message(- This represents a Pd message. [message(’s are

generally discussed in relation to [object]’s that respond to
that [message(.

2. INTRODUCTION
With the power that even a cheap laptop can provide,

the computer has gained widespread acceptance as musical
tool. More and more musicians are using computers as an
instrument for live performance, with many tools such as Pd
performance patches, Reaktor[rea()], or Ableton Live[abl()]
designed just for this purpose. Though these tools can pro-
vide an engaging performance environment, the actual per-
formance leaves something to be desired. The audience may

Permission to make digital or hard copies of all or part of this work for
any purpose are granted under a Creative Commons Attribution-ShareAlike
license: http://creativecommons.org/licenses/by-sa/2.
0/
pdc̃onference, Sept. 27th - Oct. 3rd, 2004 Graz, Austria
Copyright 2005 Copyright remains with the author(s).

be unable to tell whether the performer is actually control-
ling the music in real time, or just clicking a start button
and reading their email. Such performance also lacks phys-
icality in the interaction and is quite limited in the range of
possible gestures.

Digital synthesis has freed instrument design from being
tied to the physical method of generating sound. Thus any
arbitrary interface can be mapped to any given synthesis
algorithm. This allows musical instrument designers to de-
sign their physical interface without being constrained by
how the sound is actually being generated. A multitude
of means of getting physical input from the human body
are readily available. These, in combination with the high
level, rapid programming environment of Pd, allow a broad
range of people to make their own computer-based physical
musical instruments. A new model of instrument design is
emerging from this, shifting from devices that are designed
for a broad user base, to general building blocks that al-
low the individual musician to create their own instrument.
The New Interfaces for Musical Expression (NIME)[nim()]
conference is representative of such work, formed largely by
musicians who are creating and playing their own instru-
ments.

Pd is an fertile platform for such work, providing a high
level, rapid programming environment that is accessible to
a wide range of people with varying background. It is a
unified platform for a broad range of activities, combining
realtime audio, video synthesis and manipulation, physical
modelling, and more with many options for data input and
output including MIDI, HIDs, and general serial communi-
cations. Since Pd is free software that runs on most op-
erating systems, musicians with even very limited budgets
can build their own computer music instruments. Up until
recently, computer music has been out of reach to all but a
select few, it is now possible to build an instrument using
Pd that costs less than most traditional musical instruments,
including the cost of the computer.

3. INPUT
So many computer musicians are bound to the standard

keyboard/mouse/monitor interaction model. To provide an
engaging performance, musicians need to move beyond that
interaction model. The human body is capable of a great
range of gestures, large and small. Computer musicians
should not be limited to the small set of gestures that normal
computer use encompasses. In order to physically interact
with the computer, input devices are needed. The first ques-
tion is how much the musician wants to control at a given

Figure 1: Michel Waisvisz with The Hands; Max
Mathews with The Radio Drum

time and how much a human is capable of managing at a
given moment.

3.1 Dimensions of Control
Humans can only control a limited number of dimensions

simultaneously. You could say that humans have limited
”bandwidth”.[Cook(2001)] It is possible to provide too many
dimensions of control, making the instrument difficult to
play, hampering expressivity. If the instrument is too sim-
ple, then it will have a limited range. Existing instruments
and playing techniques are a good model of how many di-
mensions of control are useful. One example is the bowing
motion of the violin, which can easily be emulated using a
mouse, or an arrangement of buttons, like a piano, which
could come in many forms.

A good place to start for examples of the level of com-
plexity that a human can manage in a physical interface are
the tried-and-true traditional instruments. From violin to
piano to any instrument that humans have mastered we can
see examples of functional interfaces. The violin and the pi-
ano are good examples for this because both of them offer a
wide range of control over the sound produced, but in quite
different manners.

The violin has 4 dimensions of control: bowing velocity,
bowing pressure, location of the bowing as compared to the
bridge, and the finger position on the strings. Mostly, the
violinist is playing one string with a maximum of two or
maybe three strings at a time, but the violinist is basically
always playing one line at any given moment.

The piano model differs from the violin; playing numer-
ous simultaneous notes is standard. A good pianist can even
play two separate lines on one hand, making four simulta-
neous lines possible. The trade-off comes in the amount of
control that the pianist has over the string as compared to
the violinist. The piano has 2 dimensions of control for each
string: velocity of key press and application of the damper.
The pedals provide another simple dimension of control with
the soft pedal. The damper and sostenuto pedal both pro-
vide control over the same damper as the finger can control,
but in a different way. The final dimension of control for the
piano is which key you hit, giving a different pitch. This pro-
vides 4 common dimensions of control, with the soft pedal
providing a rarely used and simple 5th dimension. So in

Figure 2: A typical gaming joystick.

comparison the violin, playing one line the piano is simpler,
therefore there is bandwidth left to allow playing multiple
lines simultaneously.

3.2 Human Interface Devices
There are many off-the-shelf Human Interface Devices

(HIDs) which can serve as musical controllers. While some
of them are not up to the standards needed for musical
performance, in terms of latency and resolution, many
standard USB HIDs perform quite well as controllers.
Devices notable for their performance include gaming
controllers such as gaming mice and joysticks; and tablets.
These types of devices can be used with Pd with low
latency and very high resolution. For example, USB
optical mice can provide 4000 DPI every 5ms.

3.2.1 Joysticks
Anyone who has played a video game is familiar with a

joystick. Joysticks come in a wide variety of shapes, sizes
and forms. Joysticks can have between 7 and 10 bit reso-
lution, and anywhere from a 25Hz to 250Hz sampling rate
depending on the hardware and the drivers. The basic ana-
log joystick is inexpensive and leaves a lot to be desired as
a musical controller. Modern gaming devices are of much
higher quality and are better suited to musical applications.
A joystick provides two or three absolute axes of measure
per hand. Since a joystick’s position data is absolute, the
position of the joystick can be tightly mapped to different
control parameters. For example, StickMusic[?] uses the
axes of a joystick to control the timbre, therefore the timbre
will be the same given the same position of the joystick.

There are two objects available in Pd for using joysticks:
Joseph Sarlo’s [joystick] [Sarlo()] and Hans-Christoph
Steiner’s [linuxevent] [Steiner(b)]. [joystick]’s outlets are
dynamically created, providing an easy way to access all of
the axe s a given joystick has. But it has the disadvantage

Figure 3: A high-performance gaming mouse.

of having different numbers of outlets with different
joysticks, making it harder for a given Pd patch to work
with multiple joysticks. [linuxevent] provides access to all
supported buttons, hat switches, and axes through a fixed
number of outlets. This data is provided out of 4 outlets:
time, the timestamp of the data; type, the type of data, i.e.
axis, button, etc.; code, the specific instance of the type,
i.e. X-axis, trigger button; and value, the data for that
specific instance. When using [linuxevent], the value data
will need to be routed based on the type and the code

[linuxjoystick] is a simplified object based on [linuxevent].
It has a fixed amount of outlets, so that your patch doesn’t
need to change with different joysticks, with the disadvan-
tage being that this object doesn’t support axes beyond X,
Y, twist, throttle, and 1 hat switch. You can make a cus-
tom object for your joystick using an abstraction based on
[linuxevent] (see the Pd help patch for an example).

3.2.2 Mice
The mouse has a lot of untapped potential as a musical

controller though they are generally viewed as a pointing
device relegated to moving a pointer around a screen. But
the instrument designer need not use the mouse in its tradi-
tional role. Modern mice can be high precision devices that
work well in a variety of situations. Optical USB mice can
have down to 5 ms of latency with up to 4000 dpi resolution
per cycle, making them the most precise of the relatively
cheap HIDs. Also, mice come in a wide variety of forms,
from standard mice with balls or optical sensors, to track-
balls, or trackpads. If it works as a standard mouse it can
be used with the standard mouse objects.

The mouse is a little more tricky to use than other HIDs
because, like the keyboard, it is usually in constant use by
the OS. This means that mouse button clicks can mistakenly
land on buttons and other GUI widgets with unintended ef-
fects. There are a number of ways to avoid this. The most
basic and rudimentary method is to maximize a blank Pd
window over the whole screen. Another basic workaround is
to avoid using the mouse buttons at all in the instrument.
Currently then best solution is to run the patch in -nogui

Figure 4: A keyboard customized for gaming.

mode, then there is no GUI for the mouse pointer to inter-
act with. Ideally, there would be a way to steal the mouse
from the GUI from within Pd so that it can use the mouse
exclusively.

There are a number of objects available for getting data
from the mouse. [linuxmouse]or [linuxevent] are currently
the best choices in general because they provide the most
flexible access to the mouse data. [linuxmouse]provides low
level access to the mouse data. It outputs the relative change
in position in screen pixels from the previous polling cycle.
Using the relative data means that the mouse data is not
limited by the size of the screen. With other objects, when
the mouse pointer hits the edge of the screen, the data in
that dimension stops changing, since its outputting absolute
pixel coordinates. [linuxmouse]outputs the relative change
in position each cycle regardless of where the mouse pointer
is. The units are still screen pixels, but the size of the area
where the mouse can move is unlimited. Set the mouse at
the highest tracking speed for the highest resolution. This
will make the pixels per centimeter the mouse moves much
higher.

[MouseState] outputs the absolute coordinates of the
mouse pointer on the screen in terms of pixels. This object
is a clone of the Max/MSP object. Since Max/MSP
originally ran on the MacOS only, this object was tailored
for that environment, meaning that it only tracks the state
of the first mouse button. All of the other mouse buttons
are totally ignored by this object. [gemmouse] provides the
location of the mouse pointer within the Gem[gem()]
window, which can provide a solution for the problem of
the OS also using the mouse at the same time. But since
the resolution is tied to the resolution of the Gem
window, [gemmouse] provides equal or less resolution than
[MouseState]. [serialmouse] provides access to the data
from serial mice. They have a 25-50Hz refresh rate, which
limits it as a serious musical controller.

One example of an instrument built using the
[linuxmouse]object is StickMusic, and instrument created
using a haptic (meaning related to the sense of touch)
joystick and a haptic mouse. In StickMusic, the mouse is
used as if bowing a string. The X-axis velocity is mapped
to the amplitude of the output with Y-axis position
mapped to the pitch. Using veolcity over position works
well with the mouse since the mouse provides only relative
location information.

3.2.3 Keyboards
Basically every computer has a keyboard, which provides

a large array of buttons designed around the human hand
and can detect multiple simultaneous key presses. The key-
board can be a compelling musical controller along the lines
of the piano, but using it can trap the musician in the
keyboard/mouse/monitor interaction model. The keyboard
does not need to be used in the standard way, it could be a
standalone instrument strapped onto the body like a guitar.
It is a cheap and useful controller, if care is taken to escape
the standard keyboard interaction.

Pd provides a number of objects for accessing the key-
board data. [key], [keyup] and [keyname] report key presses
as long as a Pd window has focus. They are standard
Pd objects and work on all platforms. [key] outputs the
system-specific key number on key down; [keyup] outputs
the system-specific key number on key up; [keyname] out-
puts the key name on the right outlet, and the state of that
key whenever a key is pressed or released. [gemkeyboard] and
[gemkeyname] report key presses when the Gem window has
focus. [gemkeyboard] outputs the system-specific key num-
ber on key down while [gemkeyname] outputs the key name
on the right outlet, and the state of that key whenever a
key is pressed or released. It is also possible to get all of
the keyboard data using [linuxevent]. With this object, Pd
will always get the key press data regardless of whether Pd
or Gem has focus since it reads directly from the keyboard
device.

As with the mouse, the OS and the Pd application also
use the data from the keyboard, leading to the same prob-
lems. The same workarounds that work for the mouse apply
when usingthe keyboard and a controller. Also, when Pd is
running in -nogui mode, it will never have focus since there
would be no GUI component running, therefore all the cur-
rent keyboard objects but [linuxevent] would not report any
data in -nogui mode.

3.2.4 Tablets
Digital tablets such as the Wacom products are quite at-

tractive for use as a musical controller because they are very
high resolution with sampling rate generally around 100Hz.
The Wacoms provide very accurate absolute position data in
the X and Y axis, as well as two dimensions of pen tilt, pen
tip pressure, and button state. More than one positioning
device can be used simultaneously, including multiple pens
or in combination with a mouse-like device.

There are two options when it comes to using a tablet with
Pd: [gemtablet] and [linuxevent]. [gemtablet] is quite similar
to [gemmouse] and therefore has the same limitations in that
the data is limited to the size of the Gem window. For use
as a musical instrument, [linuxevent] provides access to the
tablet data at its full resolution.

Since tablets generally serve as a system pointing device
like a mouse, using tablets with Pd can cause the same prob-
lems as when using the mouse. The workarounds are the
same as well, but with some operating systems it might be
possible to stop the tablet from acting as a system pointing
device thereby restricting access to the tablet data to Pd.

3.3 Other Devices
There are a wide variety of HIDs that don’t fit neatly

into the above categories, but nonetheless could be inter-
esting musical controllers, devices such as steering wheels,
gamepads, the Griffin PowerMate[gri()] USB knob or the
SpaceOrb [spa()]. Many of these input devices are supported

Figure 5: PowerMate USB knob and SpaceOrb

Figure 6: A force-feedback gamepad and steering
wheel

by the Linux input event system, which means that they are
supported by the [linuxevent] object. [gemorb] supports the
SpaceOrb, a six degree of freedom ball controller which at-
taches to the computer using a serial port. The SpaceOrb
is a cheap and interesting controller, but in the long run, its
low resolution limits it use as a musical controller.

3.4 Sensors and Electronics
There is a huge variety of sensors, switches, buttons, dis-

plays, and electronic devices readily available, from force-
sensitive resistors to accelerometers to infrared proximity
sensors. Building from individual parts allows the designer
to tailor the controller closely to there desires.

3.5 Sensor Boxes
Recently, there has been a surge in the development of

various sensor boxes which allow users to easily get data
from various sensors into their computers. There are three
main methods that these sensor boxes get data into the com-
puter: serial, MIDI, and USB. The MIDI interfaces such as
the Doepfer Contact-to-MIDI CTM64 [doe()] are the easiest
way to use arbitrary devices for input. Such boards convert
electric signals to MIDI, making them very easy to use in a
musical setting.

For sensor boxes that use serial or USB to connect to the
computer, how they are interfaced depends on what protocol
is used over the serial or USB connection. Generally, there
would need to be specific Pd objects written in order to use
them with Pd, but there might be ways around this, such
as using command line tools and the [shell] object. The
MakingThings’ Teleo [tel()] is an example of a USB interface
with specific objects needed to use it. Currently there are
only objects for Max/MSP, but there is talk of Pd support.

Figure 7: A sensor box setup using the CTM-64

Figure 8: A MIDI slider box.

3.6 Microcontrollers
Microcontrollers such as the Microchip PIC [pic()] or the

Atmel AVR [atm()] have become a popular method of get-
ting sensor data into computers. They are cheap and run
fast enough to track the output of an array of sensors. The
downside is that a solid knowledge of electronics is needed
to create reliable instruments. Also, many microcontrollers
are too slow to provide good resolution.

Using [comport] for serial communications is currently the
only functional method of accessing a microcontroller in Pd.
There are successful instruments built with microcontrollers
that use MIDI, OpenSoundControl (OSC), and custom pro-
tocols designed for the task at hand. The Stranglophone
and Pierrophone[Sharon(2004)] use accelerometers and slid-
ers to get data from the user, and then outputs standard
MIDI data via a serial port. This MIDI data is used by Pd
to control a synthesizer. In the Sound Shell [Raskob()], a
PIC microcontroller samples infrared proximity sensors and
hall effect magnetic sensors and outputs data serially using
MIDI.

3.7 MIDI Equipment
A wide variety of controllers use MIDI to communicate,

from MIDI slider boxes to multipurpose ”control surfaces”
to more esoteric controllers like the Kaoss Pad [kao()]. Since

the roots of Pd and the Max family of data flow languages
lies in MIDI, it is very well supported. MIDI devices are
generally very low latency, but the MIDI protocol itself is
designed around 7-bit resolution with some 14-bit resolution
devices. 7-bit is quite limited for a controller, especially
compared to USB tablets and mice.

There are many variations of the mixing board, known as
MIDI ”control surfaces”, which provide anything from rows
of basic sliders to large consoles with sliders, knobs, buttons,
etc. They generally are reliable and designed for musical
applications, making them a natural choice for a musical
controller. Nick Fells uses MIDI control surfaces in a number
of different instruments. His pieces Words on the streets are
these and Still Life[Fells(2002)] are two examples. They use
the Peavey PC1600x control surface, mapping each slider to
various parameters to be directly controlled in realtime.

The Kaoss Pad is built around a two dimensional touch
controller. It also has a couple arrays of buttons as well as a
couple switches and knobs, which output MIDI data. Using
this MIDI output in Pd, you can map all of the parts of the
controller however you see fit. Kaos Tools [kao()] provide a
set of objects that streamline the use of the Kaoss Pad in Pd.
The Palm Pilot in combination with the program Theremidi
[the()] can provide a cheap alternative to the Kaoss Pad.
Theremidi uses the Palm Pilot touchscreen as an X/Y MIDI
controller, much like the Kaoss Pad.

3.8 Video
Computers have gotten to the point that heavy video and

graphics processing is quite affordable. This opens up the vi-
sual dimension for the musician in a whole new way. Motion
and color tracking using video processing allows all sorts of
interactions that previously would have been quite expen-
sive and difficult to implement. By extracting data from live
video streams, a wide range of gestures can be captured and
mapped how the instrument designer sees fit.

Video is a noisy medium. Lighting and postprocessing can
be important in obtaining usable data values. Most current
video cameras run at slow frame rates, and are therefore
not low latency. When using NTSC (60hz field rate) or
PAL (50hz field rate) video capture devices, there is a built-
in 16/20 msec delay from action to detection, not including
processing time. Most webcams run at a framerate of 30
Hz, quite slow for use as a musical controller. But webcams
using USB 2.0 or IEEE-1394 (”Firewire”) can provide much
higher frame rates to reduce this latency, some as high as
120Hz.

There are three key methods of tracking gestures with
video: color, motion, and shape. The most common one
is using motion detection. With Gem, you can use
[pix movement] in combination with [pix blob]; PDP
provides [pdp mgrid], which is grid-based motion tracking;
GridFlow provides motion detection by subtracting
previous frame from current frame using [@-]. For color
and shape tracking, PDP provides [pdp ctrack] and
[pdp shape] respectively. Another option is to process the
visual data using outside software and feed that data into
Pd. reacTable [Kaltenbrunner et al.(2004)Kaltenbrunner,
Geiger, and Jordà] takes that approach, using OSC to
communicate between the two pieces of software.

4. NON-AUDITORY FEEDBACK
In using computer to make music, we have gained a large

degree of control over the sounds we can make and coordi-
nate. But with almost all computer music experiences, there
is something lacking that the traditional musical experience
is rich in: non-auditory feedback. Mostly this feedback is
in the form of haptic sensations such as vibration, but the
traditional musician can also see many of the workings of
the sound generation in action, i.e. the movement of a gui-
tar string. These two key methods of providing feedback,
haptic and visual, are available within the Pd environment,
which enable Pd to provide rich, instantaneous feedback. In
effect, using non-auditory feedback opens up unused input
channels to the brain.

4.1 Haptics
Adding haptic feedback brings back the tactile feedback

loop that is an fundamental aspect of playing traditional in-
struments[O’Modhrain(2000)]. Haptic interfaces have thus
far mostly been used to control synthesis methods that have
direct analogies to the physical world[Nichols(2002)] [Cadoz
et al.(2003)Cadoz, Luciani, Florens, and Castagné] [Howard
et al.(2003)Howard, Rimell, and Hunt]. Scanned synthesis,
designed with haptics in mind, relies on metaphors from the
physical world [Wright et al.(2001)Wright, Freed, Lee, Mad-
den, and Momeni] to synthesize sound. StickMusic [?] uses
haptics to provide feedback for a phase vocoder, which has
no analogy to the physical world.

While somewhat limited as musical controllers, using off-
the-shelf haptic gaming devices allows the user to rapidly
ramp up and build a functional instrument that employs
haptic feedback. Haptic joystick offer many different types
of feedback, from forces to friction to vibration. Haptic mice
have a motor which can create pulses that are perceived as
either individual events, a stream of pulses, or an audible
vibration, depending on their frequency. It is also possible to
construct simple haptic devices such as The Plank [Verplank
et al.(2002)Verplank, Gurevich, and Mathews].

The ff [Dongen()] library provides objects to control the
feedback in most gaming haptic controllers, with different
objects for each of the supported haptic effects, such as [ff-
spring] and [ff-periodic]. [ifeel] [Steiner(a)] controls the pulse
motor in iFeel mice. Currently, these objects only work on
GNU/Linux. If you want to build your own haptic devices,
you will need to figure out how to control them from Pd.
[comport] in combination with a microcontroller provides
the easiest method.

4.2 Visuals
Contrary to haptic feedback which so far provides a sim-

ple imitation of the real world, visual computing opens up
the realm of visual feedback far beyond what is offered in
traditional instruments. While visual feedback is often im-
portant in traditional instruments, most of the activity is
on a scale that is too small for human vision to detect. Us-
ing computer-generated visuals, the computer can provide
complex feedback through a channel that is often under uti-
lized in musical performance. The graphical synthesis and
processing afforded by Gem[gem()], PDP[Schouten()], and
GridFlow[Bouchard()] Pd allows this work to be done en-
tirely within Pd.

reacTable is an interesting example of visual feedback as
applied in a realtime performance environment. It has vari-
ous widgets which represent building blocks along the same
lines as objects in Pd. When the user makes a connection

between widgets, a visual connection is also made. This vi-
sual connection has different colors and textures depending
on what kind of connection it is.

5. MAPPINGS
Digital synthesis has freed instrument design from being

tied to the physical method of generating sound. Thus any
arbitrary interface can be mapped to any given synthesis
algorithm; indeed the mapping can also be designed to suit
the goals of the designer[Hunt et al.(2002)Hunt, Wanderley,
and Paradis]. There are a number of strategies that have
been used to derive mappings. The most straightforward
method is thinking in terms of controls and parameters that
should be controlled. But this often ends up leading to di-
rect mappings of controls to parameters, which can be a lim-
ited way of turning gestures into sound. Using the velocity
or acceleration of a given control, for example, can provide
for much more compelling gestural control. Another clas-
sic mapping strategy is creating a multi-dimensional ”tim-
bre space” which the musician navigates[Vertegaal(1994)].
In this method, a few dimensions of timbre of chosen and
then mapped out into a dimensional space which the user
can navigate. A. Cont, T. Coduys, and C. Henry present
a novel approach to mapping, using neural networks to cre-
ate mappings that are based on learning gestures from the
user.[Cont et al.(2004)Cont, Coduys, and Henry] Their soft-
ware, written in Pd, makes designing mappings an iterative
process, where the user ranks the desirability of a given ges-
ture, leading eventually to a chosen array of performance
gestures.

Before controller data can be mapped, the output from
many devices needs to be scaled, smoothed, or otherwise
processed in order to provide good control. On the most ba-
sic level, the range coming from the input device will have to
be scaled to match the parameters being controlled. Data
from high resolution devices such as mice and tablets can
be jerky and seemingly erratic. Using an [average] object
on the data stream, you can smooth the data stream. By
making it a weighted average using the [weight(message,
you can ameliorate the added latency caused by the averag-
ing. When working with sensors and electronics, often the
output of the sensors must be smoothed before it can be
properly sampled since the resolution of the microproces-
sor is limited. This must then be done using electronically,
using an integrator, for example.

OSC provides a framework for abstracting the mapping
process, which can help clarify the problems of mapping
[Wright et al.(2001)Wright, Freed, Lee, Madden, and Mo-
meni]. For example, the output of the controller and the
input of the synthesizer can be mapped using a descriptive
OSC name space, allowing the instrument designer to more
easily focus on the mapping without having to think about
the implementation details of the controller or the synthe-
sizer.

6. FUTURE WORK
Currently, GNU/Linux is the preferred platform for build-

ing instruments for Pd because of HID and force feedback
objects only run on GNU/Linux. But both Windows and
MacOS X have solid support for HIDs and force feedback,
so the Pd objects just need to be written. Ideally, these
objects would be written to use the same interface as exist-

ing objects so that instrument patches would could easily
be used on as many platforms as possible. Since my current
platform of choice is MacOS X, I plan on writing a set of
cross-platform objects to support HIDs and haptic gaming
devices and incorporate them into a HID toolkit for Pd.

In terms of mapping , there is a lot of potential in using
physical modeling instead of simple averaging methods
for processing the data from the input devices. The
pmpd[Henry(2004)] library provides the basic building
blocks for creating physical models within Pd.

Now that video and graphics have become a standard part
of Pd, it seems that the time is ripe for the exploration of
physical instruments for controlling visual synthesis. Most
current video editing setups are physical interfaces, but are
mostly keyboard/mouse based and not tailored for capturing
gestures in order to synthesize visuals.

7. REFERENCES
Ableton live. URL
http://www.ableton.com/index.php?main=live.

Atmel AVR. URL http://atmel.com/products/avr/.

Doepfer CTM-64. URL http://doepfer.de/ctm.htm.

Gem. URL http://gem.iem.at.

Griffin PowerMate. URL http://www.

griffintechnology.com/products/powermate/.

Korg Kaoss Pad. URL http:

//www.korg.com/gear/info.asp?A_PROD_NO=KP2.

New interfaces for musical expression conference. URL
http://www.nime.org.

Microchip PIC. URL
http://microchip.com/stellent/idcplg?

IdcService=SS_GET_PAGE&nodeId=74.

Native instruments reaktor. URL http://www.

nativeinstruments.de/index.php?reaktor_us.

SpaceTec SpaceOrb 360. URL
http://www.3dgamers.com/articles/more/37/.

MakingThings Teleo. URL
http://makingthings.com/teleo.htm.

Theremidi. URL http://www.versiontracker.com/

dyn/moreinfo/palm/3118.

M. Bouchard. GridFlow. URL
http://artengine.ca/gridflow/.

C. Cadoz, A. Luciani, J.-L. Florens, and N. Castagné.
Acroe - ica artistic creation and computer interactive
multisensory simulation force feedback gesture
transducers. In Proc. of the Conference on New
Interfaces for Musical Expression (NIME03), 2003.

A. Cont, T. Coduys, and C. Henry. Real-time gesture
mapping in pd environment using neural networks. In
Proc. of the Conference on New Interfaces for Musical
Expression (NIME04), 2004.

P. Cook. Principles for designing computer music
controllers. In Proc. for Workshop in New Interfaces
for Musical Expression, Seattle, WA, USA, 2001. URL
http://citeseer.ist.psu.edu/544138.html.

G. V. Dongen. ff library for pd. URL
http://www.xs4all.nl/~gml/software.html.

N. Fells. On space, listening and interaction: Words
on the streets are these and still life, 2002.

C. Henry. pmpd: Physical Modelling for Pure Data. In
Proc. of the 2004 International Computer Music

Conference, pages 37–41, Miami, Florida, USA, 2004.

D. Howard, S. Rimell, and A. Hunt. Force feedback
gesture controlled physical modelling synthesis. In
Proc. of the Conference on New Interfaces for Musical
Expression (NIME03), 2003.

A. Hunt, M. Wanderley, and M. Paradis. The
importance of parameter mapping in electronic
instrument design. In Proc. of the Conference on New
Interfaces for Musical Expression (NIME02), 2002.
URL http://hct.ece.ubc.ca/nime/2002/

proceedings/paper/hunt.pdf.

M. Kaltenbrunner, G. Geiger, and S. Jordà. Dynamic
patches for live musical performance. In Proc. of the
Conference on New Interfaces for Musical Expression
(NIME04), Hamamatsu, Japan, 2004.

C. Nichols. The vbow: Development of a virtual violin
bow. In Proc. of the Conference on New Interfaces for
Musical Expression (NIME02). NIME, 2002.

S. O’Modhrain. Playing By Feel: Incorporating Haptic
Feedback into Computer-Based Musical Instruments.
PhD thesis, Stanford University, 2000. URL http:

//ccrma-www.stanford.edu/~sile/thesis.html.

E. Raskob. Sound shell. URL
http://lowfrequency.org/itp/NIME/concept.html.

J. Sarlo. joystick pd object. URL
http://crca.ucsd.edu/~jsarlo/pd.

T. Schouten. Pure Data Packet (pdp). URL
http://zwizwa.fartit.com/pd/pdp/overview.html.

M. E. Sharon. The stranglophone: Enhancing
expressiveness in live electronic music. In Proc. of the
Conference on New Interfaces for Musical Expression
(NIME04), Hamamatsu, Japan, 2004.

H.-C. Steiner. [ifeel] object for Pd, a. URL
http://at.or.at/hans/pd/hid.html.

H.-C. Steiner. [linuxevent] object for Pd, b. URL
http://at.or.at/hans/pd/hid.html.

B. Verplank, M. Gurevich, and M. Mathews. The
plank: Designing a simple haptic controller. In Proc.
of the Conference on New Interfaces for Musical
Expression (NIME02), 2002.

R. Vertegaal. An evaluation of input devices for
timbre space navigation. Master’s thesis, Department
of Computing, University of Bradford, 1994. URL
http://citeseer.ist.psu.edu/

vertegaal94evaluation.html.

M. Wright, A. Freed, A. Lee, T. Madden, and
A. Momeni. Managing complexity with explicit
mapping of gestures to sound control with osc
managing complexity with explicit mapping of
gestures to sound control with osc. In Proc.,
International Computer Music Conference (ICMC),
2001.

